Cloud Type and Ice Microphysics Products with Combined Radar and Lidar Measurements

Zhien Wang

University of Wyoming

Other Contributors:

Min Deng, University of Wyoming
Jay Mace, University of Utah
Hajime Okamoto, University of Kyushu
Kenneth Sassen, University of Alaska

Thanks for the supports of CALIPSO team!

Why Combining Radar and Lidar for Cloud Study

Different wavelengths:

Lidar: 0.5 um

CPR: 3300 um

- 1. Different scattering intensities from the same particles
- 2. Different sensitivities for different size particles
- 3. Different attenuations

An example of collocated CloudSat and CALIPSO measurements

Combined radar-lidar measurements provide improved cloud physical and optical properties!

- CloudSat products with combined radarlidar measurements
 - 2B-GEOPROF-lidar: cloud vertical distribution.
 - 2B-CLDCLASS-lidar: Cloud phase and type.
 - 2C-ICE: ice cloud microphysical properties.
 - 2B-FLXHR-lidar: heating rate profile with lidar aerosol and cloud properties.

Cloud type classification -motivations

- 1. The need of algorithm implementation.
- 2. Different impacts on Earth energy and water cycles.

Global annual mean overcast sky cloud-induced radiative flux changes in W m⁻²

```
Ci Cs Deep convective Ac As Ns Cu Sc St

TOA total: 5.4 -27.7 -65.5 -16.3 -58.8 -78.2 -29.8 -67.0 -76.8

From Chen et al. J. Climate, 13, 264-286, 2000
```

- 3. Different types of clouds are usually associated with different cloud dynamics.
- 4. Climate changes can result in changing frequency of cloud types and changing properties of a cloud type. The combination of them determines the change of the role of clouds in the Earth water and energy cycles.

Cloud Type Distribution

2B-CLDCLASS (radar-only)

The general structure of 2B-CLDCLASS-lidar algorithm Outputs with

Combined lidar-radar Cloud Phase Identification

Global cloud phase distribution

2C-ICE Product —ice cloud microphysical property

Min Deng, University of Wyoming Jay Mace, University of Utah Zhien Wang, University of Wyoming Hajime Okamoto, University of Kyushu

2C-ICE CloudSat Operational Product Retrieval Algorithm

Developed based on the optimization Framework:

Deng et al (2010), J. Geophys. Res., 115, D00J15, doi: 10.1029/2009JD013104.

Forward Calculation Model:

PSD assumption: Gamma distribution

Particle habits: Hexagonal Column, Bullet Rosette, Aggregate

Radar backscattering: Hong 2007

Lidar extinction: Yang et al 2000

Lidar backscattering to extinction ratio: 15 – 30

Multiple scattering factor: 0.6

Algorithm outputs: Effective size, Extinction, IWC, and their

error estimations

Profiling Retrieval Example

TC4 in situ Validation

Data Sample (200610-200709)

Global ice cloud property

-Initial results from 2C-ICE

Total IWP from NASA fvMMF

(Waliser et al 2009)

Zonal Mean Ice Cloud Properties

- Ice cloud amount is dominated by nonprecipitating ice clouds;
- •Ice mass is dominated by precipitating ice clouds.

New Potentials for Model Evaluation

Ice mass is dominated by radar only region.

Lidar only region has more than 70% occurrence in the tropics.

2C-ICE may provide subsets of frozen hydrometers for model validation based on radar, lidar cover zones and precipitating flags.

Summary

- New and improved cloud type including cloud phase and ice microphysical products by combining CloudSat and CALIPSO measurements will soon be available.
- Want some example files or results for interesting cases before the formal R05 release, contact algorithm developers:
 - Zhien Wang <u>zwang@uwyo.edu</u>
 - Jay Mace <u>Jay.Mace@utah.edu</u>
 - Min Deng <u>mdeng2@uwyo.edu</u>

Suggestion and question?